R/features.R
loadflux-features.Rd
You can calculate a series of summary statistics (features) of a given variable for a dataset. For example, a three number summary, the minimum, median, and maximum, can be calculated for a given variable. This is designed to work with the [features()] function shown in the examples. Other available features in `loadflux` include:
feat_event(x)
A vector to extract features from.
# You can use any of the features `feat_*` in conjunction with `features`
# like so:
library(dplyr)
library(fabletools)
library(tsibble)
#>
#> Attaching package: 'tsibble'
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, union
djants <- djan %>%
hydro_events(
q = discharge,
datetime = time,
window = 21
) %>%
as_tsibble(
key = he,
index = time
)
djants %>%
features(
time, # variable you want to explore
feat_event
) # the feature summarisation you want to perform
#> # A tibble: 113 × 4
#> he start end length
#> <dbl> <dttm> <dttm> <drtn>
#> 1 1 2017-06-06 11:00:00 2017-06-07 11:00:00 24 hours
#> 2 2 2017-06-07 12:00:00 2017-06-08 09:00:00 21 hours
#> 3 3 2017-06-08 10:00:00 2017-06-09 11:00:00 25 hours
#> 4 4 2017-06-09 12:00:00 2017-06-10 10:00:00 22 hours
#> 5 5 2017-06-10 11:00:00 2017-06-11 12:00:00 25 hours
#> 6 6 2017-06-11 13:00:00 2017-06-12 12:00:00 23 hours
#> 7 7 2017-06-12 13:00:00 2017-06-13 10:00:00 21 hours
#> 8 8 2017-06-13 11:00:00 2017-06-14 08:00:00 21 hours
#> 9 9 2017-06-14 09:00:00 2017-06-15 11:00:00 26 hours
#> 10 10 2017-06-15 12:00:00 2017-06-17 11:00:00 47 hours
#> # … with 103 more rows